Thursday 2 June 2011

The real definition of radiation



Visible light

Light


Light, or visible light, is a very narrow range of electromagnetic radiation of a wavelength that is visible to the human eye (about 400–700 nm), or up to 380–750 nm.[1] More broadly, physicists refer to light as electromagnetic radiation of all wavelengths, whether visible or not.

Infrared

Infrared (IR) light is electromagnetic radiation with a wavelength between 0.7 and 300 micrometres, which equates to a frequency range between approximately 1 and 430 THz. IR wavelengths are longer than that of visible light, but shorter than that of terahertz radiation microwaves. Bright sunlight provides an irradiance of just over 1 kilowatt per square meter at sea level. Of this energy, 527 watts is infrared radiation, 445 watts is visible light, and 32 watts is ultraviolet radiation.

Microwave

Microwaves are electromagnetic waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz. This broad definition includes both UHF and EHF (millimeter waves), and various sources use different boundaries.[1] In all cases, microwave includes the entire SHF band (3 to 30 GHz, or 10 to 1 cm) at minimum, with RF engineering often putting the lower boundary at 1 GHz (30 cm), and the upper around 100 GHz (3mm).

Radio waves

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Like all other electromagnetic waves, they travel at the speed of light. Naturally-occurring radio waves are made by lightning, or by astronomical objects. Artificially-generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, satellite communication, computer networks and innumerable other applications. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves may cover a part of the Earth very consistently, shorter waves can reflect off the ionosphere and travel around the world, and much shorter wavelengths bend or reflect very little and travel on a line of sight.

Very low frequency (VLF)

Very low frequency or VLF refers to radio frequencies (RF) in the range of 3 to 30 kHz. Since there is not much bandwidth in this band of the radio spectrum, only the very simplest signals are used, such as for radio navigation. Also known as the myriametre band or myriametre wave as the wavelengths range from ten to one myriametres (an obsolete metric unit equal to 10 kilometres)

Extremely low frequency (ELF)

Extremely low frequency (ELF) is a term used to describe radiation frequencies from 3 to 30 Hz. In atmosphere science, an alternative definition is usually given, from 3 Hz to 3 kHz.[1] In the related magnetosphere science, the lower frequency electromagnetic oscillations (pulsations occurring below ~3 Hz) are considered to lie in the ULF range, which is thus also defined differently from the ITU Radio Bands.

Thermal radiation (heat)

Thermal radiation

Thermal radiation, a common synonym for infra-red, is the process by which the surface of an object radiates its thermal energy in the form of electromagnetic waves. Infrared radiation from a common household radiator or electric heater is an example of thermal radiation, as is the heat and light (IR and visible EM waves) emitted by a glowing incandescent light bulb. Thermal radiation is generated when heat from the movement of charged particles within atoms is converted to electromagnetic radiation. The emitted wave frequency of the thermal radiation is a probability distribution depending only on temperature, and for a black body is given by Planck’s law of radiation. Wien's law gives the most likely frequency of the emitted radiation, and the Stefan–Boltzmann law gives the heat intensity.

Black body radiation

Black body radiation is radiation from an idealized radiator that emits at any temperature the maximum possible amount of radiation at any given wavelength. A black body will also absorb the maximum possible incident radiation at any given wavelength. The radiation emitted covers the entire electromagnetic spectrum and the intensity (power/unit-area) at a given frequency is dictated by Planck's law of radiation. A black body at temperatures at or below room temperature would thus appear absolutely black as it would not reflect any light. Theoretically a black body emits electromagnetic radiation over the entire spectrum from very low frequency radio waves to x-rays. The frequency at which the black body radiation is a maximum is given by Wien's displacement law.

Discovery

Wilhelm Röntgen discovered and named X-rays when experimenting with a vacuum and a tube, he noticed a fluorescence on a nearby plate of coated glass. In one month, he discovered the main properties of X-rays that we understand to this day. Henri Becquerel found that uranium salts caused fogging of an unexposed photographic plate, and Marie Curie discovered that only certain elements gave off these rays of energy. She named this behavior radioactivity.

Alpha particles, beta particles and gamma ray radiation were discovered by Ernest Rutherford through simple experimentation. Rutherford used a generic radioactive source and determined that the rays produced by the source struck three distinct areas on a screen of reactive material: one of them corresponding to a positive charge (alpha), one of them being negative (beta), and one of them being neutral (gamma). He calculated the magnitude of the charge by their location. Using this data, Rutherford concluded that this radiation consisted of three different types, and named them after the first three letters of the Greek alphabet alpha, beta, and gamma.

In December 1899, Marie Curie and Pierre Curie discovered radium in pitchblende. This new element was two million times more radioactive than uranium, as described by Madam Curie.

Uses of radiation

In medicine

Medical radiography and Medical radiation scientist

Radiation and radioactive substances are used for diagnosis, treatment, and research. X-rays, for example, pass through muscles and other soft tissue but are stopped by dense materials. This property of X-rays enables doctors to find broken bones and to locate cancers that might be growing in the body. Doctors also find certain diseases by injecting a radioactive substance and monitoring the radiation given off as the substance moves through the body. Radiation used for cancer treatment is called ionizing radiation because it forms ions in the cells of the tissues it passes through as it dislodges electrons from atoms. This can kill cells or change genes so the cells cannot grow. Other forms of radiation such as radio waves, microwaves, and light waves are called non-ionizing. They don't have as much energy and are not able to ionize cells.

In communication

All modern communication systems use forms of electromagnetic radiation. Variations in the intensity of the radiation represent changes in the sound, pictures, or other information being transmitted. For example, a human voice can be sent as a radio wave or microwave by making the wave vary to correspond variations in the voice.

In science

Researchers use radioactive atoms to determine the age of materials that were once part of a living organism. The age of such materials can be estimated by measuring the amount of radioactive carbon they contain in a process called radiocarbon dating. Environmental scientists use radioactive atoms known as tracer atoms to identify the pathways taken by pollutants through the environment.

Radiation is used to determine the composition of materials in a process called neutron activation analysis. In this process, scientists bombard a sample of a substance with particles called neutrons. Some of the atoms in the sample absorb neutrons and become radioactive. The scientists can identify the elements in the sample by studying the emitted radiation.


No comments:

Post a Comment